ATTACHMENT 7

Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Board's website at http://www.waterboards.ca.gov/drinking water/certlic/drinkingwater/CCR.shtml)

Wate	r Syste	m Name: ROAD RUNNER Mobile Home Park
Wate	r Syste	m Number: 3401055
Furth comp	er, the liance	ystem named above hereby certifies that its Consumer Confidence Report was distributed on (date) to customers (and appropriate notices of availability have been given). system certifies that the information contained in the report is correct and consistent with the monitoring data previously submitted to the State Water Resources Control Board, Division Water.
Certi	fied by	: Name: Jarry Rodino
		Signature: Rod.
		Title: Waracer
		Phone Number: (919) 862-7440 Date: 10-18-16
To su all ite	ems tha CCR	the report delivery used and good-faith efforts taken, please complete the below by checking at apply and fill-in where appropriate: was distributed by mail or other direct delivery methods. Specify other direct delivery delivery delivery.
		I faith" efforts were used to reach non-bill paying consumers. Those efforts included the wing methods:
		Posting the CCR on the Internet at www
		Mailing the CCR to postal patrons within the service area (attach zip codes used)
		Advertising the availability of the CCR in news media (attach copy of press release)
		Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
	X	Posted the CCR in public places (attach a list of locations)
		Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools
		Delivery to community organizations (attach a list of organizations)
		Other (attach a list of other methods used)
		estems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at llowing address: www
		rivately-owned utilities: Delivered the CCR to the California Public Utilities Commission

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.

Posters in Launtry Room on property

*. .

3

w.

2015 Consumer Confidence Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report show the results of our monitoring for the period of January 1 - December 31, 2015 and may include earlier monitoring data.
Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que le entienda bien.
Type of water source(s) in use: Groundwater
Name & general location of source(s): The well is located at an undisclosed location on the property
Drinking Water Source Assessment information: For a copy of the source water assessment contact San Bernardino County Environmental Health Services at 1-800-442-2283
Time and place of regularly scheduled board meetings for public participation:
For more information, contact: Tammy Rodino – Park Manager Phone: 909 862-7440

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Roadrunner MHP

Water System Name:

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Report Date: 5/7/16

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections		of months in violation		CL	MCLG	Typical Source of Bacteria	
Total Coliform Bacteria	0		0 More than 1 sample in a month with a detection		0	Naturally present in the environment		
Fecal Coliform or E. coli	0		0	A routine sample ar repeat sample detectotal coliform and e sample also detects coliform or <i>E. coli</i>		0	Human and animal fecal waste	
TABLE 2	- SAMPLIN	IG RESUI	LTS SHO	WING THE	DETECTIO	ON OF LEA	D AND COPPER	
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding	AL	PHG	Typical Source of Contaminant	
Lead (ppb)	2-9-09	5	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits	
Copper (ppm)	2-9-09	5	ND	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
	TABLE 3	-SAMPL	ING RES	ULTS FOR S	SODIUM A	ND HARDI	NESS	
Chemical or Constituent San (and reporting units) Da		Level Detecte		Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant	
Sodium (ppm)	10/18/10	77		N/A	none	none	Salt present in the water and is generally naturally occurring	
Hardness (ppm)	10/18/10	210		N/A	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually	

*Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 4 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

naturally occurring

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrate as NO ₃ (ppm)	6-30-15	3.6	N/A	45	45	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
*Gross Alpha (pCi/L)	3-25-15, 6-30-15, 12-14-15, 12-18-14	17.2	14.7-23.0	15	0	Erosion of natural deposits
*Uranium (pCi/L)	3-25-15, 6-30-15, 12-14-15, 12-18-14	18.6	14.5-21.8	20	0.43	Erosion of natural deposits
Fluoride (ppm)	10/18/10	1	1.0	2	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Total chromium (ppb)	10/18/10	2.3	2.3	50	100	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits.
TABLE 5 – DETE	CTION OF	CONTAMINA	NTS WITH A SI	ECONDAR	Y DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sulfate (ppm)	10/18/10	120	N/A	500	N/A	Runoff/leaching from natural deposits; industrial wastes
Chloride (ppm)	10/18/10	22	N/A	500	N/A	Runoff/leaching from natural deposits; seawater influence
Specific conductance (µS/cm)	10/18/10	770	N/A	1600	N/A	Substances that form ions when in water; seawater influence
Total dissolved solids (ppm)	10/18/10	450	N/A	1000	N/A	Runoff/leaching from natural deposits
	TABLE (- DETECTION	OF UNREGUI	ATED CO	NTAMINAN	ITS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notificat	ion Level	Health Effects Language
			2 COLUMN			5 - 9

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by

Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Roadrunner Mobile Home Park is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
MCL for uranium exceeded	Uranium is naturally occurring in our water source.	Ongoing	Point of use filtration	Some people who drink water containing uranium in excess of the MCL over many years may have kidney problems or an increased risk of getting cancer.
MCL for gross alpha particle activity exceeded	Gross alpha particle activity is naturally occurring in our water source.	Ongoing	Point of use filtration	Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES						
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant	
E. coli	0	0	0	(0)	Human and animal fecal waste	
Enterococci	0	0	TT	n/a	Human and animal fecal waste	
Coliphage	0	0	TT	n/a	Human and animal fecal waste	

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL	NOTICE OF FECAL IND	DICATOR-POSITIVE	GROUND WATER SOURCE	SAMPLE
				We will be a second of the sec
	SPECIAL NOTICE FOR	IINCOPPECTED SIG	CONTRACT DEFICIENCIES	
	OI LONIL HOTICE FOR	ONCORRECTED SIC	SNIFICANT DEFICIENCIES	
		1		
	VIOLA	TION OF GROUND V	VATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
	0			3 8
		-		

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES				
Treatment Technique ^(a) (Type of approved filtration technology used)				
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	Turbidity of the filtered water must: 1 – Be less than or equal to NTU in 95% of measurements in a month. 2 – Not exceed NTU for more than eight consecutive hours. 3 – Not exceed NTU at any time.			
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.				

2015 SWS CCR Form Revised Jan 2016

	Consumer	Confid	lence R	eport
--	----------	--------	---------	-------

Page 6 of 6

Highest single turbidity measurement during the year	
Number of violations of any surface water treatment requirements	

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

* Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below.

Summary Information for Violation of a Surface Water TT

TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
Sumr	nary Information fo	r Operating Und	er a Variance or Exempt	tion